Cardiovascular Research (2016) 112, 426–428
doi:10.1093/cvr/cvw199

EDITORIAL

Conflicting mechanisms of AT2 cardioprotection revealed

Raffaele Altara*, Sean P. Didion, and George W. Booz

Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4500 USA

This editorial refers to ‘The angiotensin II type 2 receptor activates flow-mediated outward remodelling through T cell-dependent interleukin-17 production’, by A. Caillon et al., pp. 515–525.

Coronary artery disease is a major cause of mortality in the developed world due to the death of cardiac muscle because of inadequate delivery of oxygen-rich blood. The knowledge gained from basic research on preventing cardiac muscle loss by enhancing the formation of new arteries in the heart (angiogenesis) has not translated to date into clinical benefit. An alternative, perhaps more promising strategy is to foster arteriogenesis, which refers to the remodelling of pre-existing collateral resistance vessels to form arteries that effectively bypass major arterial obstructions. Indeed, a positive correlation is observed between the number of collateral arteries and extent of their coverage and survival in patients with coronary artery disease, although similar remodelling if it occurs in an atherosclerotic artery may increase the propensity for plaque destabilization and rupture. Notably, several pro-arteriogenic mechanisms or treatments promote atherosclerotic plaque development and instability, while conversely anti-arteriogenic factors may inhibit arteriogenesis.

The structural changes in the vessel wall that occur with arteriogenesis reflect outward remodelling, which is an increase in lumen diameter and relative reduction in wall thickness. The primary stimulus that drives arteriogenesis is sheer stress due to increases in blood flow and entails activation of endothelial cells (EC), basal membrane degradation, infiltration of immune cells, proliferation of vascular smooth muscle cells (VSMC), and changes in the extracellular matrix. Specific factors involved in the outward remodelling include nitric oxide (NO), vascular endothelial growth factor, chemokine (C-C) motif ligand 2 (CCL2; also known as monocyte chemoattractant protein 1 or MCP-1), and matrix metalloproteinases (MMPs; especially MMP-9), although our understanding of how arteriogenesis progresses in vivo is rudimentary.

Collateral vessel growth is driven by local inflammation and involvement of both the innate and adaptive immune systems. Infiltration of both macrophages and lymphocytes into the vessel wall occurs with M2 macrophages playing an essential role in collateral remodelling. NK cells and CD4+ effector T helper cells are predominant players as well, although regulatory T cells (CD4+ CD25+ FOXP3+ T cells) were found to have only a moderate effect on arteriogenesis. However, the function of different CD4+ helper lymphocyte subsets in arteriogenesis is not well studied. In this issue, Caillon et al. report the novel observation that memory T helper 17 (Th17) cells that produce interleukin (IL)-17 and express the angiotensin II type 2 (AT2) receptor are critical for outward arterial remodelling to occur in vivo in the mouse mesenteric arterial bed after ligation of feed arteries supplying collateral pathways. Normal outward remodelling that occurs in wild-type mice in response to high flow was absent in AT2 receptor knockout mice, as well as in nude mice (which lack T cells). Outward remodelling in response to high flow could be reproduced in AT2 receptor knockout mice if they were also infused with exogenous IL-17. These findings strongly implicate an important role for the AT2 receptor, T cells, and IL-17 in the outward remodelling of blood vessels in response to high flow. In vitro studies further implicated a role for AT2-induced IL-17 production from Th17 cells. IL-17 release could be induced from memory T cells, but not naïve T cells, following incubation with angiotensin II (Ang II) and this response could be inhibited by the presence of PD123319, a selective AT2 receptor antagonist. These data suggest that AT2 receptor signalling is required for IL-17 production in Th17 cells in response to Ang II. Of particular interest, treatment of older mice with the AT2 receptor agonist C21 was able to restore outward remodelling that is otherwise lost with aging.

There is a growing list of studies showing a protective effect of the AT2 receptor on the heart and vasculature that involves in part anti-inflammatory actions. In the heart, expression levels of AT2 on cardiac myocytes, fibroblasts, and EC are thought to increase under stress conditions. However, little is known about the presence of AT2 receptors on subsets of infiltrating immune cells. Recently, a novel regulatory T cell subset expressing the AT2 receptor was reported to have a beneficial impact on heart function and infarct size after myocardial infarction in the mouse. The impact of AT2 on atherosclerosis is somewhat controversial, although the bulk of evidence supports a protective role of the AT2 receptor via anti-inflammatory actions in this setting as well, such as reduced ROS formation and attenuated expression of adhesion molecules by EC. In contrast, the work of Caillon et al. reveals the potential importance of the AT2 receptor in protecting the heart involving an inflammation-driven process (Figure 1).

The critical role of IL-17 in outward remodelling reported by Caillon et al. is consistent with the earlier observation of Madhur et al.

The opinions expressed in this article are not necessarily those of the Editors of Cardiovascular Research or of the European Society of Cardiology.

*Corresponding author: Tel: +1-601-984-1696; fax: +1-601-984-1637; E-mail: raltar@umc.edu

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
attenuated outer remodelling in IL-17 knockout mice in the carotid ligation model of atherosclerosis. Caillon et al. present evidence to support the conclusion that one role of IL-17 in outward remodelling is to enhance endothelial nitric oxide synthase (eNOS) expression and activity, although there is evidence that other sources of NO, such as inducible NOS (iNOS), may substitute for eNOS activation in driving arteriogenesis. Caillon et al. also report that IL-17 activates MMP-2 and MMP-9 activity in macrophages and EC. IL-17 may also activate VSMC oxidative stress, migration, or proliferation. In general, the actions of IL-17 on EC and VSMC are pro-inflammatory, and while there is evidence that IL-17 may be atheroprotective, IL-17 is generally considered atherogenic. Overall, the actions of IL-17 in atherosclerosis are pleotropic and even contradictory, likely reflecting concentration, spatiotemporal, and immune cell type-dependent considerations. Obviously, the impact of AT2 expressing Th17 cells on atherosclerosis needs to be established, before the utility of targeting these cells to facilitate arteriogenesis is considered. Nonetheless, the nuances associated with the role of IL-17 in atherosclerosis, may preclude targeting this route to stimulate arteriogenesis.

Additional questions raised by the study of Caillon et al. include: what is the mechanism that couples the AT2 receptor to IL-17 production, whether sex differences occur, and what is/are the antigen(s) responsible for activation of the AT2-positive Th17 cells? Identifying the chemoattractant factors involved, which are likely organ-specific, might...
facilitate their therapeutic targeting as well. It also remains to be established whether a similar scenario also occurs in the heart as well as other non-mesenteric vascular beds.

In summary, the study by Caillon et al. provides convincing pharmacological and genetic evidence of a novel role for AT2 receptor activation on certain memory Th17 cells in supporting a sub-inflammatory state and IL-17 production that drives outward remodelling and arteriogenesis in response to high blood flow. More broadly, translating this knowledge to the clinic may be challenging in the context of coronary artery disease and atherosclerosis based on the pleotropic and to a large extent detrimental actions of IL-17.

Acknowledgements
The authors are very appreciative of the thoughtful suggestions and comments of A.M.G. The authors acknowledge the generous support of the Department of Pharmacology and Toxicology of UMMC.

Conflict of interest: None declared.

Funding
This work was supported by a grant from the National Heart, Lung, and Blood Institute at the National Institutes of Health [grant number 5R01HL107632-04] to SPD.

References